Downloaded from orbit.dtu.dk on: ene 13, 2022

DTU Library

=
=
—

i

Reversibility of the Quad-Edge operations in the Voronoi data structure

Mioc, Darka; Anton, Francois; Gold, Christopher; Moulin, Bernard

Published in:
International Symposium on Voronoi Diagrams in Science and Engineering (ISVD)

Link to article, DOI:
10.1109/1SVD.2007.34

Publication date:
2007

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

Mioc, D., Anton, F., Gold, C., & Moulin, B. (2007). Reversibility of the Quad-Edge operations in the Voronoi data
structure. In International Symposium on Voronoi Diagrams in Science and Engineering (ISVD) (pp. 135-144).
IEEE. https://doi.org/10.1109/ISVD.2007.34

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

e Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
e You may not further distribute the material or use it for any profit-making activity or commercial gain
e You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

https://doi.org/10.1109/ISVD.2007.34
https://orbit.dtu.dk/en/publications/5e7ab99d-74c1-4227-985b-d66241cb1530
https://doi.org/10.1109/ISVD.2007.34

Reversibility of the Quad-Edge operations in the Voronoi d&a structure

Darka Mioc
Department of Geodesy and Geomatics Engineering
University of New Brunswick,
P.O. Box 4400, Fredericton, New Brunswick, Canada E3B 5A3
dmioc@unb.ca

Francois Anton Christopher M. Gold
Informatics and Mathematical Modelling University of Glamorgan
Technical University of Denmark Pontypridd, Wales, UK, CF37 1DL

Building 321, 2800 Kgs. Lyngby, Denmark ChristopherGold@Voronoi.Com

Bernard Moulin
Département d’Informatique, Université Laval,
Pavillon Pouliot, Ste Foy, QC G1K 7P4, Canada
moulin@ift.ulaval.ca

Abstract ical mechanisms of operation of bit-devices and it could be
maintained at higher levels as well. Finally, the two types
In Geographic Information Systems the reversibility of of reversibility (low-level and high-level) are deeply con
map update operations have not been explored yet. Innected, because, as it turns out, achieving the maximum
this paper we are using the Voronoi based Quad-edge datapossible computational performance generally requires ex
structure to define reversible map update operations. Theplicit reversibility not only at the lowest level, but at all
reversibility of the map operations have been formalised at levels of computing—in devices, circuits, architectutass
the lowest level, as the basic algorithms for addition, dele guages, and algorithms. In GIS, the reversibility has not
tion and moving of spatial objects. Having developed re- been explored sufficiently yet. The reversibility in GIS
versible map operations on the lowest level, we were ablecan be used for efficient implementation of rollback mech-
to maintain reversibility of the map updates at higher level anisms and dynamic animations needed in spatial analysis
as well. The reversibility in GIS can be used for efficient [9].
implementation of rollback mechanisms and dynamic map

visualisations. 2 Quad-Edge based Voronoi data structure

. The Voronoi diagram for a set of map objects (points and
1 Introduction line segments) is the tessellation of space where each map
object is assigned an influence zone (or Voronoi region),
Reversible computing, in a general sense, means com¢that is the set of points closer to that object than to anyrothe
puting using reversible operations, that is, operatioas th object (see [6] and Figure 1).
can be easily and exactly reversed, or undone. Further- The algorithm used to construct the Voronoi vertices has
more, when reversibility is maintained at the highest lev- been described in [1]. The boundaries between the regions
els, in computer architectures, programming languages, an of this tessellation form a net (the Voronoi diagram), whose
algorithms, it provides opportunities for interesting b dual graph (the Delaunay triangulation) stores the spatial
tions such as bi-directional debuggers, rollback mecimagis adjacency (topology) relationships among objects. Within
for speculative executions in parallel and distributed- sys such a dynamic Voronoi spatial data structure, as developed
tems, and error and intrusion detection techniques. The re-by Gold [3], the map objects (points and/or line segments)
versibility can be maintained at the lowest level, intheghy are stored as nodes of the dual spatial adjacency (topology)

Figure 1. A Voronoi diagram

graph: the Delaunay triangulation. The underlying data
structure used is the Quad-Edge data structure [7] (see Fig
ure 2).

Figure 2. The Quad-Edge data structure for
the Voronoi diagram of Figure 1

[7] a partition S of M into three finite collections of disjdin
parts, the vertices (denoted ByS), the edges (denoted by
£S) and the faces (denoted i) with the following prop-
erties:

e Every vertex is a point of M,
e Every edgeisaline of M,
e Everyface is a disk of M,

e The boundary of every face is a closed path of edges
and vertices.

A directed edge of a subdivisioR is an edge ofP to-
gether with a direction along it (see page 80 in [7]). Since
directions and orientations can be chosen independeuttly, f
every edge of a subdivision there are four directed, orgente
edges [7]. For any oriented directed edgee can define
unambiguously its vertex adrigin e Org, its destination,

e Dest, itsleft face,e Left, and itsright face,e Right. The
flipped versiore Flip of an edgee is the same unoriented
edge taken withopposite orientatiorand same direction.
The symmetrioof ¢, e Sym corresponds to the same undi-
rected edge with thepposite directiorbut the same orien-
tation ase.

Edge functions (see Figure 3) allow the traversal of the
pair of dual subdivisions. Theext edge with the same ori-
gin, e Onext is defined as the one immediately following
(counterclockwise) in the ring of edges out of the origin of
e (see Figure 3). Thaext counterclockwise edge with the
same left facedenoted bye Lnext, is defined as the first
edge we encounter aftewvhen moving along the boundary
of the faceF' = e Left in the counterclockwise sense as
determined by the orientation &f.

As shown in the top part of Figure 4, each branch of

The Quad-Edge data structure was used for computingy,o Quad-Edge is part of a loop around a Delaunay ver-

the line Voronoi diagram [6], which is the basis of the dy-
namic Voronoi data structure for points and line segments.

tex/\Voronoi face, or around a Delaunay triangle/\Voronoi
vertex. The lower part of Figure 4 shows the corresponding

The Quad-Edge data structure was introduced by [7] as apg|q nay/voronoi structure, where (a,b,c) are Quad-Edges

primitive topological structure for the representatioraaf/
subdivision on a two-dimensional manifold. The Quad-

Edge data structure is the implementation of an edge al-

gebra [7], which is the mathematical structure that defines
the topology of any pair of dual subdivisions on a two-
dimensional manifold. In the context of the application of
the Quad-Edge data structure to the computation of Voronoi
diagrams, both a primal planar graph (the Voronoi diagram)
and its dual graph (the Delaunay triangulation) are stared i
the Quad-Edge data structure - see [7].

Guibas and Stolfi [7] developed a convenient mathe-
matical structure for representing the topological relati
ships among edges of a pair of dual subdivisions on a two-
dimensional manifoll A subdivision of a manifold M is

1A two-dimensional manifold is a topological space with thegerty

and (1,2,3) are Delaunay vertices.
2.1 Delaunay/Voronoi Quad edge equivalence

Two subdivisionsS and.S* are said to be thdual[7] of
each other if for every directed and oriented edgéeither
subdivision there is another edg®ual (that is defined as
the dual ofe and isolated by parenthesis in the following
expressions) of the other subdivision such that:

e the dual ofe Dual is e: (e Dual) Dual = e,

e the dual of the symmetric of is the symmetric of
e Dual: e Sym Dual = (e Dual) Sym,

that every point has an open neighbourhood which is a disk.

Next Prev j) ,:
- » N N

i &-Lnext\e.Dnext, {e.Dprev|e.Rprev

' e : B
‘e.Onext/e.Rnext/ “-“9"'-”"9" e'Lpre"j Figure 4. A simple Voronoi diagram and its
k ! k ! corresponding Quad-Edge

Figure 3. The edge functions (adapted from are arbitrary finite sets (of edges), athezt, Rot, and
Guibas and Stolfi [7]) Flip are functions onF and E* satisfying the following
properties:

e ¢ Rot* =¢;

¢ the dual of the flipped version of is the symmet- e ¢ Rot Onext Rot Onext = ¢;
ric of the flipped version ot Dual: e Flip Dual =
(e Dual) Flip Sym, e c Rot® + ¢;

e moving counterclockwise around the left face of e cc &S & eRot e EST;

in one subdivision is the same as moving clockwise
around the origin ok Dual in the other subdivision:
e Lnext Dual = (e Dual) Onext™1. o ¢ Flip? = ¢;

e cc &S & eOnext € ES,

The dual of an edge is the edge of the dual subdivi- e ¢ Flip Onext Flip Onext = ¢;
sion that goes from the (vertex corresponding to the) left _
face ofe to the (vertex corresponding to the) right face of ~ ® e Flip Onext™ # e for anyn;
e but taken with orientation opposite to thatcofThe defi- . . .
nition of the dual of an edge allows to define the operation o ¢ Flip Fot Flip Fot = ¢;

Rot: the rotated version of an edges the dual ofe di- e ccES s eFlipe&S.

rected frome Right to e Le ft and oriented so that moving

counterclockwise around the right facee€orresponds to The Quad-Edge traversal opera-

moving counterclockwise around the originafot. More tions are based on the edge algebra

conciselye Rot = e Dual Flip Sym = e Flip Dual. (E, Ex,Onext, Flip, Rot), and their expression as
composition of the basic primitives [7{Dnext, Flip, and

2.2 Edge algebra Rot will be presented in the following table. Equivalent

definitions separated by signs have been presented some-
An Edge algebra is the mathematical structure used fortimes for some operations (in the left column). Similarly,

representing simultaneously a pair of dual subdivisiofs [7 equivalent decompositions separated-bgigns have been
(in our use of the Quad-Edge data structure, the DelaunayPresented sometimes for some operations (in the right
triangulation and the Voronoi diagram). It captures all the column).
topological properties of a subdivision [7]. The topolody o
the subdivision is completely determined by its edge alge- 2.3 Basic topological operations in the Quad-edge
bra, and vice versa. This allows all the edge functions to data structure
be expressed using three basic primitivE$ip, Rot, and
Onext described above [7]. An edge algebra is [7] an ab- The main advantage of the Quad-Edge data structure is
stract algebrdF, Ex, Onext, Flip, Rot) whereE and E* that all the construction and modification of planar graphs

Quad-Edge Operation

Decomposition using

Edge Algebra

e Dual e Flip Rot
e Dual™! e Flip Rot = e Rot® Flip
€Sym: eSym71 e,ROt2
eFlip~! e Flip
e Rot ! e Rot?

. e Rot Onext Rot
eOnext™" = eOprev | ¢ Flip Onext Flip

e Rot~! Onext Rot

Description
Creates an edge e to a newly
e := MakeEdge[] crea_ted data structure_ repre-
senting an empty manifold

Operation

Joins or separates the two
edge rings a Org and b Org,
and independently, the tw
dual edge rings a Left and
Left (see Figure 5)

O

Splice[a,b]

O

Table 2. Basic Quad-Edge topological opera-
tors

Operation Description

Adds a new edge e connecting the
destination of a to the origin of b,
e := Connect[a,b] in such a way that a Left = e Left 1
b Left

e Lprev = e Lnext™!

e Lnext e Rot® Onext Rot
e Rot Onext Rot 1

e Rnext e Rot Onext Rot?

e Dnext e Rot? Onext Rot?
e Onext Rot?

Disconnects the edge e from the

e Rprev = e Rnext™!

e Rot? Onext

DeleteEdge[e] | rest of the data structure
Rectifies e in order to respect the
Swaple] empty circumcircle criterion

e Dprev = e Dnext™!

e Rot~! Onext Rot~!
e Rot3 Onext Rot®

Table 3. Complex Quad-Edge topological op-
erators

Table 1. Quad-Edge traversal operations

prove the locality of the Quad-Edge data structure, we need
can be done using two basic topological operators (see Tato prove the locality of its topological operations. These i
ble 2), and the complex topological operations built from only one topological operation within the Quad-Edge data
these two basic topological operators. These complex topo-structure: the Splice operation. In the next paragraph, we
logical operations are presented in the Table 3. The twostudy the scope of the Splice operation.
basic operators modify the graph locally. Locality of the
Quad-Edge operations will be studied in detail in the next
subsection.

Splice[a,b] constructs a new edge algebrl =
(E, E*, Onext, Rot, Flip) from an existing edge algebra
A = (E, E*,Onext, Rot, Flip). The only difference be-
tweenA and A’ is their Onext edge function.Onext dif-
fers fromOnext in the following ways:
2.4 Locality of the Quad-Edge data structure

¢ interchange the values of the next edge with the same

In vector based GIS systems, the maintenance of topol- origin of a with the next edge with the same origin of
ogy is performed through batch operations, that are global, b:
i.e. by alterating all the objects in the map. In con-
trast, within the Voronoi spatial data structure, the tepol
ogy is maintained locally when objects are added and
deleted. Indeed, only the neighbours of the object be-
ing added/removed may be altered by the topology main-
tenance. In this section, we will see why the operations on
the Quad-Edge data structure have a local scope. In order to

— the edge immediately following with the same
origin in A’ is the edge immediately follow-
ing b with the same origin iMA (see Figure 5):
a Onext = b Onext,

— the edge immediately followiny with the same
origin in A’ is the edge immediately follow-

Figure 5. The Splice topological operator

ing a with the same origin inA (see Figure 5):
b Onext = a Onext,;

interchange the values of the next edge with same ori-

gin of & = a Onext Rot (see Figure 5) with the next
edge with same origin @f = b Onext Rot (See Figure
5):

— the edge immediately following with same ori-
gin in A’ is the edge immediately following
with same origin inA: « Onext' = [Onext,

— the edge immediately following with the same
origin in A’ is the edge immediately following
with the same origin iM: 3 Onext' = a Onext;

for each change of the value of the next edge with the
same origin of some edge(i.e. e Onext’ = f), re-
define the next edge with same origin of the flipped
version off (f Flip Onext’) to be the flipped version

of e:

— the edge immediately following Onext Flip
with same origin inA’ is the flipped version of
a in A: (b Onext Flip) Onext = a Flip,

— the edge immediately following Onext Flip
with the same origin i’ is the flipped version
of bin A: (a Onext Flip) Onext' = b Flip,

— the edge immediately followingd Onext Flip
with the same origin imd’ is the flipped version
of ain A: (8 Onext Flip) Onext' = « Flip,

— the edge immediately followinge Onext Flip
with same origin inA4’ is the flipped version of
gin A: (aOnext Flip) Onext' = [Flip.

e e

\‘\\e.Onext e.Rnext,,”

\e.Onext/e.Rnext!

Figure 6. A modified Quad-edge

Now, we can conclude that the scope of the Splice op-
eration is limited to the edges, b, «, and 3, and the
flipped version of the next edges with the same origin,of
b, a, and 3 (a Onext Flip, b Onext Flip, a Onext Flip,
0B Onext Flip). We conclude that the Splice operation has
a local scope, and therefore, that the Quad-Edge data struc-
ture has a local scope.

This property of the Quad-edge data structure imposes
the following definition of edge modifications due to the
operations on the data structure:

e newly created Quad-edges, when a new point is in-
serted into the structure (one Voronoi region is created
for the newly inserted point, and the neighbouring re-
gions are modified);

deleted Quad-edges, where the edges belonging to the
deleted point are deleted (the deletion of the point or
line segment in the Voronoi diagram removes its be-
longing Voronoi cell, and consequently the deletion
and the modification of the edges occur);

e modified Quad-edges, under stolen area interpolation
(see [5]), and triangle switches. Modified edges are
edges with the same ID as before, only one or two ver-
tices are changed (see Figure 6).

2.5 Reversibility of the Quad-edge operations:

Within vector based GIS systems, the operations of
maintenance of topology are not reversible. The topology
of the entire map is computed by batch operations. The
only way to revert to a previous state of the entire map is
to store the map before and after each set of batch opera-
tion. There is no possibility to revert to a previous local
state (i.e. to reverse the topology operation on a region of
a map). In this section, we will see that the set of opera-
tions on the Quad-Edge data structure is equal to its closure

under inversion. This is what we mean by reversibility of

The Rot edge function maps an edge of the priniato

the Quad-Edge operations. From the reversibility of the op- an edge of the dudl*, or an edge of the du&* to an edge
erations on the Quad-Edge data structure, we will prove in of the primalE*:

a later section that the set of the operations on the Voronoi

data structure is also closed by inversion. In order to prove

the closure of the set of operations on the Quad-Edge data
structure, we need to prove that the inverse of each one of
the operations on the Quad-Edge data structure pertains to
the set of operations on the Quad-Edge data structure. Be-
fore doing this, we prove the reversibility of the operation

on the edge algebra, on which the Quad-Edge data structure
is based.

In order to prove the reversibility of the operations on
an edge algebrd = (E, E*, Onext, Rot, Flip), we need
to prove the reversibility of the primitive edge functions
Onext, Rot, andFlip.

The Onext edge function maps an edge of the prinial
to an edge of the primal, or an edge of the dudi* to an
edge of the duak*:

Onext:

EFE—FE

E* — B~

e — e.Onext.

In both cases, the image efis the edge immediately
following e with same origin.

The reverse oDnext is also an edge function: it is
Oprev, and its decomposition using edge algebra primitive
edge functions iRotOnext Rot:

Onext™! = RotOnextRot:

EFE—FE

E* — E*

e — e.RotOnextRot = e.Onext™!

The Flip edge function maps an edge of the prinkal
to an edge of the primal, or an edge of the dudi* to an
edge of the duak*:

Flip :

EF—FE

E* — B~

e — e.Flip.

In both cases, the image efis the flipped version o
(i.e. the edge connecting the same vertices,asith the
same direction as, but with opposite orientation).

The reverse oF'lip is also an edge function: it iB'ip
itself: F'lip is an involution(Flip? = id):

Flip~ = Flip

EFE—F

E* — E*

e — e.Flip~!

=e.Flip

Rot.
E — E*
E* — F

e — e.Rot

The reverse ofot is also an edge function: it iRot3,

and its decomposition using edge algebra primitive edge
functions isRot Rot Rot:

Rot~! = Rot?:

EF*— F

EF— FE*

e — e.Rot? = eRotRotRot

The reversibility of the other edge functions results
from application of the reversion of the composition of
applications. Letf and g denote two edge functions,
then(go f)™" = f~'og ! Let us apply it to some
edge function: the reverse of theprev edge function
whose decomposition into primitive edge functions
is Onext Rot?, is Lprev™! = (One:z:t R0t2)_1

(RotQ)_l (Onext) ™ Rot? Rot Onext Rot
Rot® Onext Rot, which is an edge function that
can be also written as composition of the primitive edge
functions Onext, Rot, and Flip. The same reasoning
can be applied to any edge functions in order to prove its
reversibility.

Let us examine now the reversibility of the quad-edge
topological operations. The quad-edge topological opera-
tions are:

e:=MakeEdge[] creates a new data structure representing
a subdivision of the sphere, where apart from orientation
and direction, e is the only edge of the subdivision, and e
is not a loop [7]. Its reverse would be DestroyEdge[e], de-
stroying a data structure representing a subdivision of the
sphere, where apart from orientation and direction, e is the
only edge of the subdivision, and e is not a loop. Therefore,
the edge e must have been disconnected from all the edges
connected to it before calling the DestroyEdge operation.

Splice[a,b] is self reversible: (Splice[a,b]) ™!
(Splice[a, b]). These operations can be written in the terms
of edge algebra

In the next section the further formalization of the oper-
ations within the Voronoi diagram will be presented.

2|n section 3.1 of [7], it is shown that the topology of a sulislan is
completely determined by its edge algebra.

3 The atomic actions on the dynamic Voronoi
data structure

These map state changes are produced by map com- | Atomic operation Quad-Edge implementatior
mands [3], that are composed of atomic actions. Each
atomic action in the map command executes the geometric
algorithm for addition, deletion or change of map objects
and corresponding Voronoi cells.

e:=Locate[X];
base:=MakeEdge]];
base.Dest:=X;

; ; . Split Splice[base,e];
Theatomic actionsre: p base:=Con.[e,base.Sym]:
o the Split action inserts a new point into the structure e:=base.Oprev;

by splitting the nearest point from the pointed location base:=Con.[e,base.Sym]

into two points.

e theMergeaction deletes the selected point by merging Table 4. Split operation
it with its nearest neighbour.

e theSwitchaction is performed when a point moves and
atopological event occurs (i.e. the moving point enters
or exits a circle circumscribed to a Delaunay triangle,
switching® the common boundary of two adjacent tri-

angles.
))) Atomic operation Quad-Edge implementation
In the following tables the Quad-edge implementations
of the atomic actionSwitchin the Voronoi spatial data e:=Locate[X];
structure are given. e.org=X;
e theLink action adds a line segmétetween the points e:=e.Sym,;
; 2T : . Merge DeleteE.[e.Onext.Onext];
obtained after a Split action. The Link action must oc-)
. . . DeleteE.[e.Onext];
cur after a Split action, and adds a line segment be- DeleteE.[e]
tween the point selected for splitting and the newly '

created point.

. . . Table 5. Merge operation
e the Unlink action removes the selected line segment. ge op

The Unlink action must occur before a Merge action,
and removes the line segment between the selected
point and its nearest object.

These actions compose the set of atomic actions of the
dynamic spatial Voronoi data structure [8].

3.1 The Quad-edge implementation of the atomic
actions b.Lnext
The Quad-edge implementations of the atomic actions
Split and Merge in the Voronoi spatial data structure are
given in Tables 4 and 5.
The Quad-edge implementation of the atomic action
Switchis shown in Table 6. On Figure 7 we can see the
topological event caused by "swap” atomic operation.

a.Lnext

Figure 7. The topological event caused by
3The Switch action will be used in the construction of tihdove ac- “swap” atomic operation

tion. TheMove (topological event) action moves the selected point from

its current position to a new position or until the next tamital event.

4A line segment is composed of two half-line segments, whosenoi
regions are on each side of the line segment, having the ¢igmant as a
common boundary.

Atomic operation Quad-Edge implementation

Swap[e] where € is the "sus
pect” edge (see Figure 7).

suspect edge is an edge that
is no longer valid, becaus
the Delaunay triangulatiof
does not obey the empt
circumcircle criterion

Pd

Topological event
(Move)

< =

Table 6. Topological event operation

The Quad-edge implementations of the atomic actions
Link and Unlink in the Voronoi spatial data structure are
given in Tables 7 and 8.

4 The map update commands

The atomic actionsare the basis upon whiahap com-
mandshave been built. All the map update commands [3],
[10] of this dynamic Voronoi data structure are complex
operations composed of atomic actions. The composition
of atomic actions into map commands is provided by
syntactic rules.

The map commandsare composed of atomic opera-
tions, and the exact decomposition of map commands into
sequences of atomic actions is given in Table 9. The atomic
operations are denoted by the symbdls §, M, LandU).

For example, the map commariilove a Point”
corresponds to the sequence of movements of the point
from its initial position to its destination through all the
intersections of its trajectory with circumcircles, and th
corresponding triangles switcheé®{) in the Voronoi data
structure. The map commaridiove a Point” is possible
in this Voronoi data structure because the Voronoi data
structure is kinematic : one point may move at a time, and
this point is called thémoving point” [4, 11]. In fact, all
the operations on this kinematic Voronoi data structure use
this concept of the moving point.

For example, when a point is to be created at some
location, the nearest point from that location is split
into two (S term in the decomposition ofAdd a Point”
operationS N*), and then the newly created point is moved
as far as its final destinatio®¢ term in the decomposition
of “Add a Point operation SN?). In fact, the triangle
switch operation incorporates the movement of the moving
point to the intersection of the trajectory of the moving
point with the circumcircle that induced the triangle
switch. In Table 9, the exponents denote how many times

Atomic operation Quad-Edge implementation

e:=Locate[X];
e.Org;
e:=e.Sym;
While e.Dest:
e:=e.Onext;
a:=e.Onext;
b:=e.Oprev;
c:=b.Lnext;
d:=a.Rprev;
DeleteE.[e];

. f:=MakeE.[];
Link f.dest :=(X+Y)/2;
Splice[b,f];
e:=MakekE.[];
e.org:=f.dest;
Splicel[f,e.Sym];
g:=Con.[e.sym,a.Sym];
i:=Con.[d.sym,g.Sym];
h:=Con.[b,f.Sym];
j:=Con.[c,h.Sym];
k:=Con.[f,e]

Table 7. Link operation

Atomic operation Quad-Edge implementation

e:=Locate[X];
e.Org;
e:=e.Sym;
While e.Onext.Dest e.Dest:
e:=e.Onext;
f:=e.Onext;
g:=e.Lnext;
h:=g.Oprev;
i:=g.Rprev;
j:=f.Lnext;
k:=e.Rprev;
a:=e.Sym.Lnext;
b:=k.Lnext;
DeleteE.[e];
DeleteE.[f];
DeleteE.[g];
DeleteE.[h];
DeleteE.[i];
DeleteE.[j];
DeleteE.[K];
Connect[b,a]

Unlink

Table 8. Unlink operation

the operation is executed repeatedly, el§? denotes N Map Decomposition (the terms in paren-
executed t times, where t denotes the number of topologica| construction | theses appear at each line-line colli;
events. Whenever more than one connected sequence gfcommand sion, indexi = collision, 1< i < ¢,
topological events is executed in a map command, such C=#-collisions;

as in “Add a Line” command(SN’ SLN>? (SLN?+ t, t, denote of topological events)
MSLN=+2)), the total number of topological events is | Move a Point | N*

broken down into the number of topological events in the | Add a Point SNt

first connected sequench), the number of topological Delete a Point | N'M

events in the second connected sequefite), and so Add a Line SNUSLN® (SLNti+1) M

on. The parameterdenotes the number of times the line

(SLNt2i+2) N2 M N™ M

segment being added intersects existing line segments.

This type of intersection with an existing line segment is

Delete a Line

(N=2i+2UMSNE=+1UM)
N2UMN" M

called collision. The terms in parentheses are repeated fof Join 2 Points | SLN® (SLN™ MSLN%+1) M
each intersection with an existing line (i.e. each colljio Unjoin 2 Points| (N UMSN™=UM) N UM
Join pt Line SLN" (SLN®i+1 M SLN"2i+2)

We will now briefly explain the decomposition of each

SLN*M

map command. We have already seen the description
of “Move a Point and “Add a Point map commands.

Unjoin Pt Line

SNEUM (N2+2UMSN@=+UM)
N4UM

Map command Delete a Point is exactly the reverse of
“Add a Point map command: the point to be deleted is

Join 2 Lines

SLN©SLN® (SLN™+2) M
(SLN*t2i+2) SLN*t M

moved to the location of the nearest pointj, and then

it is merged with this nearest poind4{). The remaining

Unjoin 2 Lines

SNT=UM (N2+UMSN®=+2U M)
N2UMNYUM

map commands involve the addition or removal of one or

more new line segments. For all these map commands, the Table 9. The map commands and their decom-
position into atomic actions

decomposition includes a fixed sequence of atomic actions

that is executed only once (the sequence outside the paren-

thesis), and a sequence that is executed at each COIIiSiOri1s exactly the reverse of the preceding sequence. In order to
(replicating sequence). In the case of caglt a Liné y b gseq '

and all the join map commands, the replicating sequencejoIn two points with “Join two points map command, the

has always the same pattern in terms of atomic operationslcIrSt point must be split into two) in order to create the

((SLN'>+1 MSLN"w+2), although the actual indices may ending extremity of the line segment that starts at the first

vary). This corresponds to the splitting of the existingelin tpoollgtr.mTahI('erTé tsf;esriet\r/]vto 'IF')r?(Iar:StrTe u;:]g_en Ilrékiclfr?tor:]erst be
(SLNt2i+1), the merging of the newly created point (by the ! 9 ' : Ing ex Ity mu

t1 . o .
S atomic action in this last sequence) with the extremity moved (V) to the _Ioca_mon of the sec_ond point (mclgqlmg
. . , . eventually the replicating sequence in case of collisions)
of the line segment being addetl/{, and the continuation .) . .
. - tos Finally, the ending extremity must be merged with the sec-
of the new line segment after collisio§ L N*2i+2). In the : . O .
. o ond point (/). The fixed sequence fokJhjoin two points
case of Delete a Liné and all the unjoin map commands, .)
o . map command is exactly the reverse of the fixed sequence
the replicating sequence has always the same pattern ”}or “ Join tWo DOINtS map command. The fixed sequences
terms of atomic operations(§*2+2UM SN®2+1UM), P P : q

although the actual indices may vary). This is exactly the of the remaining map commands follow immediately from

. L - the fixed sequence oflbin two point§ map command. In-
reverse of the previous replicating sequence (the remitat . , .
. . deed, the other join map commands fixed sequence involve
sequence forAdd a Liné& and all the join map commands).

several sequences corresponding to the same atomic actions
) _) as theSLN" sequence already encountered in the fixed se-

map commands. In order to add a line withdd a Liné commands are the exact reverse of their join counterpart.
map command, the nearest point from the starting extrem-

ity location has to be split into twoS), then it has to be
moved to the starting extremity locatio&V{*). Then, the
ending extremity has to be created by splitting the starting
extremity into two §). At this point the two extremities
must be linked L) in order to form a line segment. Fi-
nally, the ending extremity has to be movedf) to its
expected location. The fixed sequence fDefete a Liné

5 Reversibility of the map commands in the
dynamic Voronoi data structure

For each map command, the reverse map command is
composed of reverse atomic actions in exactly the reverse

Atomic action | Reverse atomic action
Split Merge

Switch Switch is self-reversiblg
Link Unlink

Table 10. The reversibility of the atomic ac-
tions

Map construction commangd Reverse map
construction commandg

Move a Point Self-reversible

Add a Point Delete a Point

Add a Line Delete a Line

Join 2 Points Unjoin 2 Points

Join Pt & Line Unjoin Pt & Line

Join 2 Lines Unjoin 2 Lines

Table 11. The reversibility
mands

of the map com-

order. Due to the local scope of its spatio-temporal topol-
ogy, all the atomic actions of the dynamic Voronoi spatio-

References

(1]

(2]

(3]

(4]

temporal model are reversible. Indeed, each atomic action

has its reverse atomic action shown in the Table 10.

The consequence of the property of reversibility of the

Anton, F. and Gold, C. M., 1997, An iterative al-
gorithm for the determination of Voronoi vertices in
polygonal and non-polygonal domainBroceedings
of the 9" Canadian Conference on Computational
Geometry (CCCG’97)Kingston, Canada, pp. 257-
262.

Frank, M., Knight, T., Margolus, N., 1998, Re-
versibility in optimally scalable computer architec-
tures, The First International Conference on Uncon-
ventional Models of Computatipdanuary 1998.

Gold, C. M., 1992, An object-based dynamic spatial
data model, and its applications in the development of
a user-friendly digitizing systenRroceedings of the
Fifth International Symposium on Spatial Data Han-
dling, Charleston, pp. 495-504.

Gold., C. M., 1994, Three approaches to automated
topology, and how computational geometry helps,
Proceedings of the Sixth International Seminar on
Spatial Data HandlingEdinburgh, Scotland, pp. 145-
158.

5] Gold, C. M., Remmele, P. R., Roos, T., 1995 Voronoi

atomic actions inside the Voronoi dynamic data structure is
that a sequence of atomic actions applied in a map update
command can be reconstructed from the predecessor and
successor map states. This proves in another way that the[6]
atomic actions are reversible: the input can be deduced from

the output; or, in other words, computation happens without

any loss of information [2].

(7]

The resulting complex operations (map commands) are

reversible and Table 11), as long as their decomposition int
atomic actions is exactly known (including the numbers of

topological events and the number of line-line collisions)

6 Conclusions

(8]

In this paper we presented formalisation of the reversible

operations needed for constructing a Voronoi diagram for [

points and line segments using the Quad-Edge data struc-

ture. These reversible operations are formalized at the low
est level, as the basic algorithms for addition, deletioth an

moving of spatial objects in the Quad-Edge data structure
defined as the atomic actions. Furthermore, we manage

glo]

to preserve the reversibility of the map commands that are

composed of these atomic actions.

The applications of reversible computations in GIS could [11]
significantly improve transaction management and rollback

functionality.

Diagrams of Line Segments Made EaBypceedings
of the Seventh Canadian Conference in Computational
Geometry, (CCCG'95Québec, Canada, pp. 223-228.

Gold C. M, and Dakowicz M., 2006, Kinetic
Voronoi/Delaunay Drawing Tool$SVD, pp. 76-84.

Guibas, L., and Stolfi, J., 1985, Primitives for the
Manipulation of General Subdivisions and the Com-
putation of Voronoi DiagramsACM Transactions on
Graphics Vol. 4, No. 2, pp. 74-123.

Mioc, D., Anton, F., Gold, C. and Moulin, B., 1998,
Spatio-temporal change representation and map up-
dates in a dynamic Voronoi data structuR¥pceed-
ings of the Eight International Symposium on Spatial
Data Handling Vancouver, Canada, pp. 441-452.

9] Mioc, D., Anton F., Gold C. M. and Moulin B., 1999,

Time-travel visualization of changes in a dynamic
Voronoi data structureGartography and GISvol. 26,
No. 2, pp. 99-108.

Mioc, D., Anton F., Gold C. M. and Moulin B., 2006,
Map updates in a dynamic Voronoi data structure,
ISVD, pp. 264-269.

Roos, T., 1991, Dynamic Voronoi diagramih.D.
Thesis, University of Wzburg Germany.

